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A solution of the two-dimensional problem of elastic impact of semi-infinite bars is pres- 

ented herein. The solution is valid for all time t from the instant of impact. The behavior 

of this solution is investigated for t + 00. The results of the investigation substantiate the 

applicability of the one-dimensional approximation to the impact problem. 

Let two plane semi-infinite bars move toward each other along the y-axis with the same 

speed u. At the instant of collision, one of the bars occupies the space y > 0, 1 XI <h. and 

the other the space y < 0, ( x 1 < h, where 2h is the thickness of the bars. 

The speeds of propagation of longitudinal waves (a) and of transverse waves (b) in one 

bar are taken to be equal to the corresponding speeds in the other bar. 

The solution of the problem is sought in the form of a dilatation function A and the ro- 

tation w/2; i.e., A is the divergence of the displacement vector and o is the curl of this 

vector. The functions A and o must satisfy the wave Eqs. 

the initial conditions for t = 0 

A=w= $0, 
dA V 

at=--2;8(y) 

and the boundary conditions on the lateral surfaces of the bar x = h. 

g- + (1 - !4P) t$ - 2pa asy = 0, 
apA 

- 
( 

a20 at0 
2axay+P' p-ay" ) 

=o 

where ,g = b/a. 
The last relations are obtained by taking the second derivative with respect to time of 

the boundary conditions expressed in terms of the components of the displacement vector 

and then eliminating the time derivatives obtained with the help of the equations of motion 

of the elastic body. 

As follows from the initial conditions, the line y = 0 is a line of discontinuity. For t > 0 

the breaking up of this discontinuity causes a longitudinal wave ( 

ding waves from the lateral surfaces of the bar (I x ( <h - &&$a~o~~K%~ 
waves of unloading reach the opposite lateral surfaces and give rise to reflected waves, 

the number of which increases rapidly with time. 

The general solution is represented in the form of the sum of all the waves 
co 03 
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where the following notation has been introduced. The longitudinal wave has the subscript 
0. The unloading waves.bear the double subscript 00. Reflected waves are also denoted by 
double subscripts; a reflected wave arising from the incidence of a Iongitudinal wave on a 
lateral surface has the first subscript increased by unity over that of the incident wave 
while the second script is the same as for the incident wave. A reflected wave arising from 
an incident transverse wave is marked by increasing the second script by unity and leaving 
the first script unchanged. In addition, waves moving along the positive direction of the 
z-axis are marked with a superior plus sign, and those moving in the reverse direction by a 
superior minus sign. This notation is sufficient for the classification of all the reflected 
waves. 

It is assumed that the functions Ant (2, y, tf and o,$ (z, y, t) are equal to zero if the 
corresponding wave has not yet come into existence at time t. By virtue of this, the upper 
limits of the summations in the general solution may be taken as infinity, even though the 
number of reflected waves is actually finite for all finite t. 

It can be shown [I] that for the longitudinal wave A = - v/a, w = 0. The remaining 
waves are sought in the forms of the real parts of funct?onal-invariatt solutions [2]. 

A,: (2, Y, t) = Re A,; (e,:), 0: (2, Y, t) = Rc w,: (@,&) 
The phases of these waves f?,fk and @i*, will be complex and are determined from Eqs. 

at = ye,? + [-& r + (2 n + 1) il] c/ i-(O,?,2 -I- 2128 I,/ p-2 - (e,;)” 
(1) 

at = ?/f& -i_ 2/h 1/ 1 - (e,g_i- [&cc + (Z/c + 1) /L] jJ+‘- (@,,,)” 

The equations which have been obtained follow from the self-similarity of the unloading 
waves [I] and from the condition of equality of the phases of the incident and reflected 
waves on a surface of reflection. 

Substitution of the functional-invariant solutions into the boundary conditions leads to 
recurrence relations for the functions dA,,$Jd and do:,Jd (to simplify the notation, the 
scripts on 8 will generally be omitted). With the aid of these relations the final Eqs. are 
derived; these have the form 

The functions A&, and wofo were obtained in [l] and, in the notation adopted here, are 

dA; 
-= 

- 2iv (a” - 2b”) (~2 - 2b?@) 

d0 ;ra [(a’ - 2b”@7” + 4b%jg 1/l - c)” v/p-+ - es] (I - 02) 

dGj 
dB= 

-& 4ivaB (42 - b”-) 
-- __ 

;I I(& _ 2b?e~)~ +4&Q% )/$ _ 8”_ Jfp-5 _ &z] )/t - @% 

Thus, the solution for the reflected waves reduces to the quadratures 
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The integration is carried out along an arbitrary curve lying in the half-plane lm 8> 0 and 
connecting the points &I and 6 +, or t!&f t and 8*, where 6 + is an arbitrary point belonging 
to the wave front, i.e., 1 Re 8+ 1 < 1, ImfP = 0. The arbitrariness of this point follows from 
the fact that on the wave front 

Re Fnk (A) A’M = ReFng(d)doo = 0 

and, therefore, the functions 4: (x, y, t) = lie A~~(~) and C& (x, y, t) = Re o& (6) do not 
depend on 8 l . 

The summation of the reflectad waves leads to the final expressions: 

A (5, y, 1) = - ~/u+A+(r,y,f)+A-(2,~,1), ” (x, Y. r) = oJ+ (*, Y, t) + a- (x, y, r) 
Rf 

51 Co co nk 

f+(Z,y,+RL’~ 2 2 j (_i)k-s(n+k~~28)(n~~~a)~~k-~~~4)d~(~) 

r=O n=8 k=s ,)f 
n, ktl 

It is a peculiarity of the solution which has been obtained that the intensity of each re- 
flected wave as t -V 00 (6 + oe) tends toward infinity, and the larger the vahts of n + k for 
the wave in question, the more rapidly it does so. Therefore, to investigete the asymptotic 
character of the solution, it is ntasssry to consider that the expansion of the solution in 
a power series in t in the vicinity of the point t = OD can also contain divargent terms. 

Let as first investigate the behavior of the equation for the phases, Eq. (l), for large t. 
As these equations imply, for t +‘b~, either 8 -+ 00 (the case studied in [3]), or y + 00 (lim 
y/r et 0), or else n + 00 (lim n/t j 0) and k + 00 (lint k/t f 0). Further, from an examination 
of the lower limits of the sammations in Eqs. (2) it follows that lim n/t = lim k/t = lim s/t 
for t .t 00, Therefore, in place of n and k the new indices p = n + k - 2 s aud q = k - a are 
introduced. These have the following property: lim p/t = lim q/t = 0 for t + c+ 

Grouping the terms which are finite for t + 00 on the right-hsnd side and the diverging 
terms on the Ieft-hand side, aud factoring out at on the left, we can express tbe equation 
for the phases in the form 

~(~)~~-y&-.-~(1/~“---8”+ 1/i-_), Y=& S=s 
For t + 0) the phase 8 + 6, (S, Y), where 6, (S, Y) is the root of Eq. 8(e)-= 0. The 

fnnction 6, (S, Y) does not depend on p or q. 
The general aoletion (2) will now be investigated further. Following [3], we separate 

out the part of the function A* (r, y, t) which depends on q: 
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and expand in a power series in t: 

where 

The only singular point 0, (S, Y) must lie inside the closed path 
sed in the counterclockwise direction. 

C. This contour is travep 

n 

ptegration by parts on the contour C and representation of the functions “so and 
in the form of binomials linear in q permits us to carry out the summation with 

re~,“%~ q (see, for instance, (31). We obtain as the result that 

The summation with respect to p is then calculated 

Taking account of the expansion 

and deforming the contour C so that it contains the root of Eq. 

s(e)$-AS(1/p-‘--tF-- )/l-fP)=O 

we are able to sum with respect to p: 

(3 

f/p- - 0” A’wcZO 

,6(e) + ~s(y’p-z-@- )/CiF) + 0 (W 

Evaluating the integral with the aid of residues, we obtain the following expression for 
the function A*(x, y, t): 

In these relations the prime denotes a derivative with respect to 8 for constant S. The 
quantities S and 6 are related by Eq. (3). 

Using the Euler-Maclaurin formula, we replace the sommation with respect to s by au 
integration with respect to S: 

The upper limit of the integration S* is determined as the value of S for which 6, $9, Y) = f?+. 
The basis for the arbitrariness of the upper limit was exj%tined earlier; however, in Eq. 
(4) this arbitrariness is not evident. 

A transformation of the variable of integration from S to 8 is then carried out: 
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tf* - , 

A*(r,y,t)=~e 
VP” - 0” A, de 

_ _ 
y_, fp-2 - f12 + v’f - 8’ - A ( y’p-z - B” _ v-1 + ’ (t-l-) 

The expressions for A’oo and A are substituted, giving: 

e* 

A* (x, y, t) = Re 
iv (at--- 2bp) (a2 - 2bW) d8 

na (1- 02) [a* - 4b” (8 - bz) e”j + ’ (t-‘) 

‘The integral which has been obtained csn be represented in the form of an integral along 
a closed contour by completing the curve of integration by a segment of the real axis from 
8* to y’t. This is permissible inasmuch as the integrand is purely imaginary on the real 
axis of i?. The calculation of the contour integral by means of residues leads to the final 
expressions 

A(x,y,t)=- ,,$&G +O(telf for y<2b VI-fPt 

A (I, y, t) = 0 (t-l) for y > 2b1/1 - f?t 

In au analogous way, we conclude that 0 (x, y, t) = O(t-1). 
Thus, the interference of the reflected waves for t + 00 leads to the formation of a longi- 

tudinal wave front moving with the wave spaed of the one-dimensional approximation (for 
the plane problem, this speed is equal to 2bdaf. Ahead of the front, the strains dis- 
appear completely; behind the front, the strains which occur correspond to the one-dimen- 
sional approximation. 

The investigation which has been carried out is not applicable to points moving with 
the velocity of longitudinal waves 4 or with the velocity of Rayleigh waves, but is valid 
for velocities arbitrariiy close to those. This circumstance and also the comparison of the 
energy of the wave in the one~imensional approximation with the energy of the impact lead 
to the following conclusion. The longitudinal wave propagated with the speed a and the 
surface wave propagated at the Rayleigh speed decay with time; i.e., the relative amount 
of energy concentrated in these waves tends toward zero. 

In conclusion, we remark that the calculation of the succeeding terms of the expansion 
of the general solution in power series in t leads to considerable difficulties. Therefore, in 
order to ascertain the rapidity of convergence, numerical calculations were carried out. 
These showed that on the line of contact the exact solution o&Bates about the one-dimen- 
sional approximation and approaches it comparatively rapidly (after time t = 10 + 20 A/a). 
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